LU Decomposition is a way to break a matrix down (factor) into the product of two matrices: one lower triangular and the other upper triangular. This LU product can be used to solve systems in the form
. Of course, the first question that should come to mind is why do we care? We have a perfectly acceptable method (Gauss-Jordan) to solve systems. Why do we need an extra method that entails matrix multiplication and computing inverses in addition to row reductions? It turns out that if we have many
vectors that we need to solve the system for, then LU decomposition beats Gauss-Jordan in computational efficiency. We will take the following matrix as an example:
To begin with, if we say
how do we find the
and
matrices? First we row reduce to find an upper triangular matrix:
To find
we can say
. So we need to find
by row reducing
to
:
Next we apply the definition above to find
Now before moving on to solve a system, let's check our factorization:
So, doing the multiplication shows that this is the correct
factorization. Now let's try to solve the following system:
We can do this by saying
. We will say that
so that
. Next we will solve for
.
To solve for
we will use the inverse method so that
. Again, to find
we will row reduce:
Now we will solve
with
where we luckily already have
from previous operations:
And this is the final solution of the
system. Though this took the longest of any method, it is never practically implemented by hand. As mentioned before, its strengths lie in computing
for the same
over many
vectors.