Eigenvalues and eigenvectors have numerous applications throughout mathematics and other fields such as physics and engineering. To understand eigenvectors, we return to the topic of matrices as linear transformations. If a non-zero vector

is an eigenvector of the matrix

, then the transformation

changes the magnitude but not the direction of

. The scale factor which changes the magnitude is denoted as

and is called the corresponding
eigenvalue of the eigenvector.
So how do we find eigenvalues and eigenvectors? To begin with, we write the definition stated above as

. It is obvious that this relationship says that the transformation

is equivalent to scaling

by a constant. As mentioned before,

is a non-zero vector because for the zero vector this relationship will hold for any

or

and is thus a trivial solution. This relationship could equivalently be written as

. Here

is an isotropic (same in all directions) linear scale by

. We can now solve this equation:
Now, if we apply rules that we have learned earlier, we know that the system

does
not have a unique solution for a particular value of

if and only if

. We want this to be the case since the unique solution is the trivial case

.
Thus, finding eigenvalues amounts to finding the roots of

. As a simple example let's start with a 2x2 matrix:
1) Find

:
2) Find

:
3) Find the roots of

:
Now that we have the eigenvalues, we can plug them back into the system and solve

.
For

we must solve

:
Parameterizing the solution gives

.
For

solve

:
Parameterizing the solution gives

.